skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Silvério, Divino Vicente"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tropical forest fragmentation from agricultural expansion alters the microclimatic conditions of the remaining forests, with effects on vegetation structure and function. However, little is known about how the functional trait variability within and among tree species in fragmented landscapes influence and facilitate species’ persistence in these new environmental conditions. Here, we assessed potential changes in tree species’ functional traits in riparian forests within six riparian forests in cropland catchments (Cropland) and four riparian forests in forested catchments (Forest) in southern Amazonia. We sampled 12 common functional traits of 123 species across all sites: 64 common to both croplands and forests, 33 restricted to croplands, and 26 restricted to forests. We found that forest-restricted species had leaves that were thinner, larger, and with higher phosphorus (P) content, compared to cropland-restricted ones. Tree species common to both environments showed higher intraspecific variability in functional traits, with leaf thickness and leaf P concentration varying the most. Species turnover contributed more to differences between forest and cropland environments only for the stem-specific density trait. We conclude that the intraspecific variability of functional traits (leaf thickness, leaf P, and specific leaf area) facilitates species persistence in riparian forests occurring within catchments cleared for agricultural expansion in Amazonia. 
    more » « less
  2. Droughts can exert a strong influence on the regional energy balance of the Amazon and Cerrado, as can the replacement of native vegetation by croplands. What remains unclear is how these two forcing factors interact and whether land cover changes fundamentally alter the sensitivity of the energy balance components to drought events. To fill this gap, we used remote sensing data to evaluate the impacts of drought on evapotranspiration (ET), land surface temperature (LST), and albedo on cultivated areas, savannas, and forests. Our results (for seasonal drought) indicate that increases in monthly dryness across Mato Grosso state (southern Amazonia and northern Cerrado) drive greater increases in LST and albedo in croplands than in forests. Furthermore, during the 2007 and 2010 droughts, croplands became hotter (0.1–0.8 °C) than savannas (0.3–0.6 °C) and forests (0.2–0.3 °C). However, forest ET was consistently higher than ET in all other land uses. This finding likely indicates that forests can access deeper soil water during droughts. Overall, our findings suggest that forest remnants can play a fundamental role in the mitigation of the negative impacts of extreme drought events, contributing to a higher ET and lower LST. 
    more » « less